If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18=5x
We move all terms to the left:
3x^2-18-(5x)=0
a = 3; b = -5; c = -18;
Δ = b2-4ac
Δ = -52-4·3·(-18)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{241}}{2*3}=\frac{5-\sqrt{241}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{241}}{2*3}=\frac{5+\sqrt{241}}{6} $
| 2x-40+x=90 | | 8x+25+13x+10=180 | | 2x2-4x-3=18 | | 8v-42=2(v-9) | | 20x-11=7x-7=4x+6 | | 2=-4k-10 | | 12,4=a+7.9 | | 40=x(1.5x) | | Y=3x+11=29 | | 28-6x=2(14-3×) | | 8-3(3x-4)=-4 | | 3x2-18=5x | | 1/3(x+2/3)=1/6(x-4 | | 8r-(5r+4)=34 | | 2r/9=6 | | 312−(560÷y+43)=199 | | 5x+4=2x-24 | | 4(5.8-9×)+8.2+22x=+22x= | | 7y-7=4y+11 | | 4x=-20+10x | | 91+(6x+17)=180 | | 4(5.8-9×)+8.2+22x=+22x | | -1/3x-2=1/4 | | x/23=-15/23 | | 4n+2n=48 | | 9+2a=-3-4 | | 15.5=z/3.2 | | 5y+35=185 | | 1x-1/2=2 | | -9t+8=-8t | | 2x+3x+4x=144 | | 6x=7x=18 |